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Introduction  

Phytoplankton plants are mostly 
microscopic in size and unicellular 
(Edwards and Brindly, 1999; Pal and 
Choudhury, 2014). It is observed that 
phytoplankton grows rapidly in water, e.g., 
lakes, rivers, oceans etc. This growth of 
phytoplankton which is termed as 
phytoplankton bloom may be seasonal or 
sporadic (Griffiths, 1939; Berman et al., 
1995). It is commonly believed that 
zooplankton grazes this phytoplankton to 
control their population. There are many 
models based on nutrient-phytoplankton-
zooplankton (NPZ) model (Steele and 
Henderson, 1981; McCauley and Murdoch, 
1987). Here we shall not discuss about the 
phytoplankton bloom which occurs regularly                               

every year, but we shall consider only those 
phytoplankton blooms which are sporadic 
both in time and space. It is seen that there 
may be rapid and massive bloom of 
phytoplankton. For example, some algae 
may rise to several orders of magnitude and 
followed by sudden fall. We also know that 
many phytoplankton species are toxic. 
Blooming of such phytoplankton is known 
as Harmful Algae Blooom (HAB) 
(Hallegraeff, 1993; Anderson et al., 2008). 
So a rapid rise in their population may affect 
other species e.g., zooplankton and fish as 
their toxins mobilize up through the food 
chain. It may cause human poisoning via 
consumption of contaminated food. Control 
of the blooming of phytoplankton is possible 
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in various ways. We can consider 
zooplankton as a grazer to control the 
population of phytoplankton. It is called top-
down model (Truscott and Brindley, 
1994a,b).   

Also we can say that virus induced mortality 
(Beltrami and Carroll, 1994) can control 
phytoplankton bloom. The third option is 
that the control of nutrient can check the 
phytoplankton population. Such type of 
model is known as bottom-up model 
(Obrien, 1974; Hupperta et al., 2005) where 
concentration of nutrients control the 
initiation and demise of the bloom.  

In this paper we shall consider the bottom-
up model for population control of 
phytoplankton. It is seen that availability of 
nutrient in water causes blooming of 
phytoplankton. Our study is based on the 
fluctuation of the nutrient concentration. We 
introduce a noise term in the nutrient rate 
equation and study the influence of 
fluctuation of the concentration of nutrient 
on the evolution of phytoplankton. A very 
small change in the nutrient concentration 
leads to no bloom to bloom condition. The 
stochastic process is well described by a 
auxiliary Hamiltonian in the weak noise 
limit. Also we show that the autonomous 
kinetic equations of nutrient and 
phytoplankton can be expressed as Li´enard 
type oscillator (Ghosh and Ray, 2014). We 
have analysed the condition of bifurcation of 
this model. In this work we have shown the 
nature of stability of system under the 
influence of noise and its effect on the 
consequent blooming. This work was 
organised as follows: in section 2 we discuss 
bottom-up model with the introduction of 
noise term. In section 3 we express the 
kinetic equations in the Li´enard form to 
discuss about the bifurcation conditions of 
the system. Finally in section 4 we conclude 
the paper.  

The Bottom Up Model  

Fluctuation of Nutrient  

A general model which describes nutrient - 
phytoplankton growth is given by Huppert et 
al., (2004)  

where the variable N describes the 
concentration of the limiting nutrient in units 
of (mg) solute (m-3) water and P the 

phytoplankton biomass in units of (kg) 
solute (m-3). It is assumed that external 
nutrient inputs flow into the system at a 
constant rate I in units of (mg day-1 m-3), and 
that the time t is measured in days. The per 
capita phytoplankton uptake rate of nutrients 
is governed by the function g(N), for which 
several choices are possible. The model 
assumes that nutrients are lost from the 
water column at the rate e(N). The function 
f(P) represents the per capita mortality rate 
of the phytoplankton and also assumes the 
rate at which these cells sink out of the 
water column.   

We choose the function g(N) = N. In this 
case the gross uptake rate g(N)P is given by 
the usual Lotka-Voltera bilinear term (NP). 
We choose e(N) = 0, i.e., there is no loss of 
nutrient. Control of nutrient affects the 
growth of phytoplankton. We, therefore, 
consider small but rapid fluctuation of 
nutrient (Ghosh and Ray, 2014) and rewrite 
Eqs.(1, 2) as 
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where the dynamical system was driven by 
the weak white noise _(t) whose mean and 

variance can be expressed as such that D 

 

1. The Fokker-Planck Equation for 
probability distribution function W(N, P, t) 
corresponding to the Langevin description 
Eqs.(3, 4) can be written as       

In weak noise limit LtD 0, W(N, P, t) can 
be described by a WKB approximation of 
the Fokker Planck equation (6) of the form 
W(N, P, t) = W0(N, P, t) exp[S(N, P, t)/D]. 
Here W0 is a prefactor and S(N, P, t) is the 
classical action satisfying Hamilton Jacobi 
equation which can be solved by auxiliary 
Hamilton s equation of motion  

  

where we have written the mortality rate 
function (Huppert et al., 2004)  

  

The auxiliary Hamiltonian is given by  

where, the origin of auxiliary dynamical 
variable pN and pP is the fluctuation of the 
nutrient and phytoplankton respectively. We 
do a numerical analysis of the Eqns. (7 

 
10). We take following values to do the 
calculations: _ = 0.1, _ = 5, I = 0.005, a = 2, 
b = 1.85, c = 8. The initial conditions for the 
case of no bloom are N0 = 1.2 and P0 = 0.05 
and for the bloom N0 = 1.3 and P0 = 0.05, 
here N0 and P0 are the values of N and P at 
time t = 0. Also we use the the noise term 
pN (0) = 10 25 and and pP (0) = 10 25, 
where (0) stands for the initial time t = 0. In 
Figure 1 we draw the nullclines dN/dt = 0 
(dashed curve) and dP/dt = 0 (solid curve). 
The intersections of P-nullcline and N-
nullcline give the equilibrium point. In our 
analysis we introduce a noise term (t) and 
we have seen that the system is very 
sensitive to this noise. The phaseplot (Fig. 2) 
and phytoplankton plot (Fig. 3) are similar 
to that obtained by Huppert et al (Huppert et 
al., 2004). But here we do an analysis with 
the introduction of a noise term and observe 
that the system is very sensitive to the noise. 

With the choice of the noise term which is 

 

10 25, we found that the system do not get 
enough time to reach the equilibrium. In 
order that the system reaches the equilibrium 
the noise term should be as low as 10 90. If 
the value of the noise is larger than this, the 
system gets uncontrolled before it reaches 
the equilibrium state which is represented by 
the dark circle in Figure 2. We can say that 
fluctuation of the nutrient concentration has 
measureable effect on the evolution of the 
system. If the fluctuation is large the system 
does not reach the equilibrium state.   

We also draw curves (Figures 4, 5) by 
varying different parameters keeping the 
condition of bloom i.e., N(0) = 1.3 and P(0) 
= 0.05. Also we take pN(0) = pP (0) = 
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10 25. These curves are drawn to show that 
though the concentration of nutrient satisfies 
the blooming condition, there may not be 
any bloom. The other parameters must have 
the correct value so that there is a bloom. 
Table 1 gives a list of values of the 
parameters which shows that bloom is 
possible for the right choice of the different 
parameters. The dashed curve is drawn with 
values N(0) = 1.2, which is the condition of 
no bloom. It is included here to compare 
with other curves of no bloom. Also the blue 
dot-dashed curve is drawn with value of 
N(0) = 1.3, which is the condition of bloom.  

Sensitive dependence of noise in 
Phytoplankton Blooms  

We draw the time evolution of the noise 
terms pN and pP (Figure 6). Here we have 
taken the initial value of pN(0) = pP (0) = 
10 25. They show small value for some 

time but after t 

 

8 both the noises grow 

abruptly. Also the evolution of 
Phytoplankton shows abrupt rise after t = 11 
(Figure 7).   

These curves show that noise affects the 
system. In the next chapter we do a 
bifurcation analysis of the autonomous 
kinetic equations to show the dependence of 
noise.  

Bifurcation Analysis  

The autonomous kinetic Eqns. (1, 2) are two 
coupled nonlinear equations relating the 
dependence of phytoplankton on nutrient. 
We are trying to study the evolution 
phytoplankton by varying the concentration 
of nutrient and other parameters. In section 
(2) we study the evolution of nutrient by 
introducing a small but rapid fluctuation of 

nutrient and found that the system is very 
sensitive to the noise. In order to explain this 
type behavior we try to find out whether the 
system allow any bifurcation or not. Here 
we shall show that the kinetic Eqns. (1, 2) 
can be described as Li´enard oscillator 
(Ghosh and Ray, 2014; Messias and 
Messias, 1995).  

Here we define the following linear 
transformations as  

u = (1 + I) N, z = N + P (14)  

such that  

z = u (15)  

This transformation allows the reverse set as 

follows:  

Following Eqs (14) 

 

(16) we obtain the 

equation for ¨z as   

The steady states zs are given by the 
solution of the following equation  

  

Introducing the perturbation variable _ as (z  
zs) we finally obtain the following 

equation 
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Substituting the values a = 2, b = 1.85, c = 8, 
_ = 0.1, _ = 5, I = 0.005 we get the real root 
of zs to be 3.35114 and the corresponding 
value of F(0, 0) = 0.171246. That is F(0, 0) 
< 0. So the system satisfies bifurcation 
condition (Ghosh and Ray, 2014). 
Bifurcations are defined as abrupt change in 
the phase portrait due to a change of the 
parameter (Hubbard and West, 1995). First 
we find that a small change in nutrient 
concentration determine whether there will 
be a bloom or no bloom of phytoplankton 
(Huppert et al., 2004). Also other parameter 
change (Table 1) shows such type of 
behavior.   

Introduction of fluctuations of nutrients also 
exhibits instability of the system. We found 
that the system does not get enough time to 
reach the equilibrium state if the noise is 
greater than a certain value. It is extremely 
sensitive to noise. Such abrupt change in the 
system is due the fact that the system shows 
bifurcation which ultimately leads to chaos.   

In conclusion, we studied the bloom of 
phytoplankton using bottom-up model. In 
this study the introduction of noise in the 
kinetic equation shows that the system is 
very sensitive to the noise. For large value 
of noise the system does not reach the 
equilibrium. Actually the noise itself grows 
rapidly with time which causes a chaos in 
the system. We rewrite the kinetic equations 
as a Li´enard equation and we found that the 
system satisfy the bifurcation condition. As 
we found that a small change in the initial 
concentration shows the unusual feature of 
bloom and no bloom of phytoplankton. The 
change of other parameter also shows such 
behavior. Introduction of noise term also 
shows such unusual behavior. The 
observation of this unusual behavior of the 
system can be interpreted by the bifurcation 
analysis. As the system satisfies bifurcation 
condition, we can say that the sensitive 
dependence of noise is due to the presence 
of bifurcation point in the system which 
causes instability in the system that 
ultimately leads to chaos. 
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Table.1 Bloom and no bloom condition 

  

Figure.1 Plot of nullclines: Dashed curve for dN/dt = 0 and solid curve for dP/dt = 0 

  

Figure.2 Phase plot of nutrient versus phytoplankton: Solid curve shows the bloom of 
phytoplankton and dashed curve shows no bloom situation. Dark disk is the equilibrium position 

which is the interaction of P nullcline and N nullcline (Figure 1) 
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Figure.3 Growth of phytoplankton with time: Solid curve shows phytoplankton bloom and the 

dashed curve shows the case of no bloom 

  

Figure.4 Phaseplot of nutrient versus phytoplankton showing bloom and no bloom for different 
values of the parameters: Description of the curves are listed in Table 1 and also in the text 

  

Figure.5 Plot of phytoplankton with time showing bloom and no bloom for different values of 
the parameters: Description of the curves are listed in Table 1 and also in the text  
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Figure.6 Growth of noise with time: Solid curve shows growth of pN and the  
dashed curve for Pp 

  

Figure.7 phytoplankton grows indefinitely after some time leading to chaos 
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